全球今亮點!AI算法非侵入性篩查試管嬰兒胚胎
(資料圖片僅供參考)
據最新一期《柳葉刀·數字健康》發(fā)表的一項研究,美國康奈爾大學醫(yī)學院研究人員新開發(fā)出一種人工智能(AI)算法,可避免活檢的缺點,非侵入性地確定體外受精胚胎的染色體數量是否正常,準確率約為70%。
染色體數量異常,稱為非整倍體,是體外受精(IVF)胚胎無法植入或無法健康懷孕的主要原因。目前檢測非整倍體的方法之一涉及對胚胎細胞進行類似活檢的取樣和基因檢測,這種方法增加了IVF過程的成本,并且對胚胎具有侵入性。
目前,醫(yī)生主要使用顯微鏡來評估胚胎是否存在與生存能力差相關的顯著異常。為了獲得有關染色體的信息,醫(yī)生還可使用一種稱為植入前非整倍體基因檢測(PGT-A)的活檢方法。
在新研究中,研究團隊開發(fā)了STORK-A算法作為PGT-A的潛在替代方法,或作為一種更具選擇性的方式來決定哪些胚胎應該進行PGT-A測試。
新算法STORK-A使用受精后5天拍攝的胚胎顯微鏡圖像、胚胎質量評分、母親年齡等信息,會自動“學習”將數據的某些特征與非整倍體的可能性相關聯。研究團隊在10378個胚泡的數據集上訓練了STORK-A,這些胚泡的倍性狀態(tài)已知。他們在獨立數據集上測試了該算法,發(fā)現了相當的準確性結果,證明了STORK-A的普遍性。
據研究人員評估,該算法在預測非整倍體與正常染色體“整倍體”胚胎方面的準確性接近70%。在預測涉及多個染色體的非整倍體(復雜的非整倍體)與整倍體相比,STORK-A的準確率為77.6%。他們希望最終能夠使用AI和計算機視覺技術以完全非侵入性的方式預測非整倍體。
新算法代表了在降低IVF胚胎選擇風險、減少主觀性、降低成本和提高準確性方面取得的進展。研究人員稱,這是AI潛在改變醫(yī)學的一個很好的例子。
標簽: 試管嬰兒